Bacteria–zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum
نویسندگان
چکیده
Some plant growth promoting bacteria (PGPB) are enigmatic in enhancing plant growth in the face of increased metal accumulation in plants. Since most PGPB colonize the plant root epidermis, we hypothesized that PGPB confer tolerance to metals through changes in speciation at the root epidermis. We employed a novel combination of fluorophore-based confocal laser scanning microscopic imaging and synchrotron based microscopic X-ray fluorescence mapping with X-ray absorption spectroscopy to characterize bacterial localization, zinc (Zn) distribution and speciation in the roots of Brassica juncea grown in Zn contaminated media (400 mg kg(-1) Zn) with the endophytic Pseudomonas brassicacearum and rhizospheric Rhizobium leguminosarum. PGPB enhanced epidermal Zn sequestration relative to PGBP-free controls while the extent of endophytic accumulation depended on the colonization mode of each PGBP. Increased root accumulation of Zn and increased tolerance to Zn was associated predominantly with R. leguminosarum and was likely due to the coordination of Zn with cysteine-rich peptides in the root endodermis, suggesting enhanced synthesis of phytochelatins or glutathione. Our mechanistic model of enhanced Zn accumulation and detoxification in plants inoculated with R. leguminosarum has particular relevance to PGPB enhanced phytoremediation of soils contaminated through mining and oxidation of sulphur-bearing Zn minerals or engineered nanomaterials such as ZnS.
منابع مشابه
Mixed planting with a leguminous plant outperforms bacteria in promoting growth of a metal remediating plant through histidine synthesis.
The effectiveness of plant growth promoting bacteria (PGPB) in improving metal phytoremediation is still limited by stunted plant growth under high soil metal concentrations. Meanwhile, mixed planting with leguminous plants is known to improve yield in nutrient deficient soils but the use of a metal tolerant legume to enhance metal tolerance of a phytoremediator has not been explored. We compar...
متن کاملPurification of Rhizobium leguminosarum HypB, a nickel-binding protein required for hydrogenase synthesis.
The products of the Rhizobium leguminosarum hyp gene cluster are necessary for synthesis of a functional uptake [NiFe] hydrogenase system in symbiosis with pea plants, and at least for HypB and HypF, a role in hydrogenase-specific nickel metabolism has been postulated (L. Rey, J. Murillo, Y. Hernando, E. Hidalgo, E. Cabrera, J. Imperial, and T. Ruiz-Argüeso, Mol. Microbiol. 8:471-481, 1993). Th...
متن کاملModulation of rosR Expression and Exopolysaccharide Production in Rhizobium leguminosarum bv. trifolii by Phosphate and Clover Root Exudates
The acidic exopolysaccharide (EPS) secreted in large amounts by the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii is required for the establishment of an effective symbiosis with the host plant Trifolium spp. EPS biosynthesis in rhizobia is a very complex process regulated at both transcriptional and post-transcriptional levels and influenced by various nutritional an...
متن کاملEnhanced Bioadsorption of Cadmium and Nickel by E. coli Displaying A Metal Binding Motif Using CS3 Fimbriae
Display of peptides on the surface of bacteria offers many new and exciting applications in biotechnology. Fimbriae is a good candidate for epitope display on the surface of bacteria. The potential of CS3 fimbriae of enterotoxigenic E. coli as a display system has been investigated. A novel cell surface display system with metal binding property was developed by using CS3 fimbriae. Short metal ...
متن کاملEffect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings
The present work was undertaken to study the effects of 28-homobrassinolide on growth, zinc metal uptake, antioxidative enzyme [guaiacol peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), glutathione reductase (EC 1.6.4.2), ascorbate peroxidase (EC 1.11.1.11), superoxide dismutase (EC 1.15.1.1)] activities and protein content in 7-d-old seedlings of Brassica juncea L. treated with Zn metal at di...
متن کامل